SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

This article is part of the series Millimeter-Wave Wireless Communication Systems: Theory and Applications.

Open Access Open Badges Research Article

60-GHz Millimeter-Wave Radio: Principle, Technology, and New Results

Nan Guo1*, Robert C Qiu12, Shaomin S Mo3 and Kazuaki Takahashi4

Author Affiliations

1 Center for Manufacturing Research, Tennessee Technological University (TTU), Cookeville, TN 38505, USA

2 Department of Electrical and Computer Engineering, Tennessee Technological University (TTU), Cookeville, TN 38505, USA

3 Panasonic Princeton Laboratory (PPRL), Panasonic R&D Company of America, 2 Research Way, Princeton, NJ 08540, USA

4 Network Development Center, Matsushita Electric Industrial Co., Ltd., 4-12-4 Higashi-shinagawa, Shinagawa-ku, Tokyo 140-8587, Japan

For all author emails, please log on.

EURASIP Journal on Wireless Communications and Networking 2007, 2007:068253  doi:10.1155/2007/68253

The electronic version of this article is the complete one and can be found online at: http://jwcn.eurasipjournals.com/content/2007/1/068253

Received:15 June 2006
Revisions received:13 September 2006
Accepted:14 September 2006
Published:18 December 2006

© 2007 Guo et al.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The worldwide opening of a massive amount of unlicensed spectra around 60 GHz has triggered great interest in developing affordable 60-GHz radios. This interest has been catalyzed by recent advance of 60-GHz front-end technologies. This paper briefly reports recent work in the 60-GHz radio. Aspects addressed in this paper include global regulatory and standardization, justification of using the 60-GHz bands, 60-GHz consumer electronics applications, radio system concept, 60-GHz propagation and antennas, and key issues in system design. Some new simulation results are also given. Potentials and problems are explained in detail.


  1. P Smulders, Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions. IEEE Communications Magazine 40(1), 140–147 (2002). Publisher Full Text OpenURL

  2. CH Doan, S Emami, DA Sobel, AM Niknejad, RW Brodersen, Design considerations for 60 GHz CMOS radios. IEEE Communications Magazine 42(12), 132–140 (2004)

  3. H Daembkes, B Adelseck, LP Schmidt, J Schroth, GaAs MMIC based components and frontends for millimeterwave communication and sensor systems. Proceedings of IEEE Microwave Systems Conference (NTC '95), May 1995, Orlando, Fla, USA, 83–86

  4. RL Van Tuyl, Unlicensed millimeter wave communications a new opportunity for MMIC technology at 60 GHz. Proceedings of the 18th Annual IEEE Gallium Arsenide Integrated Circuit Symposium, November 1996, Orlando, Fla, USA, 3–5

  5. M Siddiqui, M Quijije, A Lawrence, et al. GaAs components for 60 GHz wireless communication applications. Proceedings of GaAs Mantech Conference, April 2002, San Diego, Calif, USA

  6. S Reynolds, B Floyd, U Pfeiffer, T Zwick, 60 GHz transceiver circuits in SiGe bipolar technology. IEEE International Solid-State Circuits Conference. Digest of Technical Papers (ISSCC '04), February 2004, San Francisco, Calif, USA 1, 442–538

  7. CH Doan, S Emami, AM Niknejad, RW Brodersen, Design of CMOS for 60 GHz applications. IEEE International Solid-State Circuits Conference. Digest of Technical Papers (ISSCC '04), February 2004, San Francisco, Calif, USA 1, 440–538

  8. W Winkler, J Borngräber, H Gustat, F Korndörfer, 60 GHz transceiver circuits in SiGe:C BiCMOS technology. Proceedings of the 30th European Solid-State Circuits Conference (ESSCIRC '04), September 2004, Leuven, Belgium, 83–86

  9. SK Reynolds, A 60-GHz superheterodyne downconversion mixer in Silicon-Germanium bipolar technology. IEEE Journal of Solid-State Circuits 39(11), 2065–2068 (2004)

  10. BA Floyd, SK Reynolds, UR Pfeiffer, T Zwick, T Beukema, B Gaucher, SiGe bipolar transceiver circuits operating at 60 GHz. IEEE Journal of Solid-State Circuits 40(1), 156–167 (2005)

  11. N Deparis, A Bendjabballah, A Boe, et al. Transposition of a baseband UWB signal at 60 GHz for high data rate indoor WLAN. IEEE Microwave and Wireless Components Letters 15(10), 609–611 (2005)

  12. SE Gunnarsson, C Kärnfelt, H Zirath, et al. Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology. IEEE Journal of Solid-State Circuits 40(11), 2174–2185 (2005)

  13. S Pinel, C-H Lee, S Sarkar, et al. Low cost 60 GHz Gb/s radio development. Progress in Electromagnetics Research Symposium, March 2006, Cambridge, Mass, USA, 483–484

  14. S Sarkar, P Sen, S Pinel, CH Lee, J Laskar, Si-based 60GHz 2X subharmonic mixer for multi-Gigabit wireless personal area network application. Proceedings of IEEE MTT-S International Microwave Symposium, June 2006, San Francisco, Calif, USA

  15. SK Moore, Cheap chips for next wireless frontier. IEEE Spectrum 43, 12–13 (2006)

  16. B Gaucher, Completely integrated 60 GHz ISM band front end chip set and test results (IEEE 802), . 15 TG3c document: 15-06-0003-00-003c, January 200

  17. IEEE 802.15 Working Group for WPAN, http://www.ieee802.org/15/

  18. WiMedia alliance, http://www.wimedia.org/

  19. R Scholtz, Multiple access with time-hopping impulse modulation. Proceedings of IEEE Military Communications Conference (MILCOM '93), October 1993, Boston, Mass, USA 2, 447–450

  20. MZ Win, RA Scholtz, Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications 48(4), 679–689 (2000). Publisher Full Text OpenURL

  21. RC Qiu, H Liu, X Shen, Ultra-wideband for multiple access communications. IEEE Communications Magazine 43(2), 80–87 (2005)

  22. RC Qiu, RA Scholtz, X Shen, Guest editorial special section on ultra-wideband wireless communications—a new horizon. IEEE Transactions on Vehicular Technology 54(5), 1525–1527 (2005). Publisher Full Text OpenURL

  23. X Shen, M Guizani, H-H Chen, RC Qiu, AF Molisch, LB Milstein, Guest editorial ultra-wideband wireless communications—theory and applications. IEEE Journal on Selected Areas in Communications 24(4), 713–716 (2006) editorial on special issue on UW OpenURL

  24. RC Qiu, X Shen, M Guizani, T Le-Ngoc, Introduction. UWB Wireless Communications, ed. by Shen X, Guizani M, Qiu RC, Le-Ngoc T (John Wiley & Sons, New York, NY, USA, 2006)

  25. A Sadri, 802.15.3c Usage Model Document (UMD), Draft (IEEE 802), . 15 TG3c document: 15-06-0055-14-003c, January 200

  26. J Park, Y Wang, T Itoh, A 60 GHz integrated antenna array for high-speed digital beamforming applications (http://www), . mwlab.ee.ucla.edu/ webcite

  27. A Hajimiri, A Komijani, A Natarajan, R Chunara, X Guan, H Hashemi, Phased array systems in silicon. IEEE Communications Magazine 42(8), 122–130 (2004)

  28. X Guan, H Hashemi, A Hajimiri, A fully integratted 24-GHz eight-element phased-array receiver in silicon. IEEE Journal of Solid-State Circuits 39(12), 2311–2320 (2004)

  29. H Hashemi, X Guan, A Komijani, A Hajimiri, A 24-GHz SiGe phased-array receiver - LO phase-shifting approach. IEEE Transactions on Microwave Theory and Techniques 53(2), 614–626 (2005)

  30. A Natarajan, A Komijani, A Hajimiri, A fully integrated 24-GHz phased-array transmitter in CMOS. IEEE Journal of Solid-State Circuits 40(12), 2502–2514 (2005)

  31. MR Williamson, GE Athanasiadou, AR Nix, Investigating the effects of antenna directivity on wireless indoor communication at 6O GHz. Proceedings of the 8th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '97), September 1997, Helsinki, Finland 2, 635–639

  32. D Dardari, V Tralli, High-speed indoor wireless communications at 60 GHz with coded OFDM. IEEE Transactions on Communications 47(11), 1709–1721 (1999). Publisher Full Text OpenURL

  33. H Xu, V Kukshya, TS Rappaport, Spatial and temporal characteristics of 60-GHZ indoor channels. IEEE Journal on Selected Areas in Communications 20(3), 620–630 (2002). Publisher Full Text OpenURL

  34. AG Siamarou, Broadband wireless local-area networks at millimeter waves around 60 GHz. IEEE Antennas and Propagation Magazine 45(1), 177–181 (2003). Publisher Full Text OpenURL

  35. CR Anderson, TS Rappaport, In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Transactions on Wireless Communications 3(3), 922–928 (2004). Publisher Full Text OpenURL

  36. F Aryanfar, K Sarabandi, A millimeter-wave scaled measurement system for wireless channel characterization. IEEE Transactions on Microwave Theory and Techniques 52(6), 1663–1670 (2004). Publisher Full Text OpenURL

  37. S Collonge, G Zaharia, G El Zein, Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel. IEEE Transactions on Wireless Communications 3(6), 2396–2406 (2004). Publisher Full Text OpenURL

  38. N Moraitis, P Constantinou, Indoor channel measurements and characterization at 60 GHz for wireless local area network applications. IEEE Transactions on Antennas and Propagation 52(12), 3180–3189 (2004). Publisher Full Text OpenURL

  39. T Zwick, TJ Beukema, H Nam, Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel. IEEE Transactions on Vehicular Technology 54(4), 1266–1277 (2005). Publisher Full Text OpenURL

  40. A Mathew, Channel model status report (IEEE 802), . 15 TG3c document: IEEE 802.15-06/0037r2, May 200

  41. PFM Smulders, MHAJ Herben, J George, Application of five-sector beam antenna for 60 GHz wireless LAN (http://www), . brabantbreedband.nl/ webcite

  42. R Ramanathan, J Redi, C Santivanez, D Wiggins, S Polit, Ad hoc networking with directional antennas: a complete system solution. IEEE Journal on Selected Areas in Communications 23(3), 496–506 (2005)

  43. F Dai, J Wu, Efficient broadcasting in ad hoc wireless networks using directional antennas. IEEE Transactions on Parallel and Distributed Systems 17(4), 335–347 (2006)

  44. T Pollet, M Van Bladel, M Moeneclaey, BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. IEEE Transactions on Communications 43(234), 191–193 (1995)

  45. M Weisenhorn, W Hirt, Uncoordinated rate-division multiple-access scheme for pulsed UWB signals. IEEE Transactions on Vehicular Technology 54(5), 1646–1662 (2005). Publisher Full Text OpenURL

  46. DH Davis, SA Gronemeyer, Performance of slotted ALOHA random access with delay capture and randomized time of arrival. IEEE Transactions on Communications Systems 28(5), 703–710 (1980). Publisher Full Text OpenURL

  47. K Cheun, Optimum arrival-time distribution for delay capture in spread-spectrum packet radio networks. IEEE Transactions on Vehicular Technology 46(4), 981–991 (1997). Publisher Full Text OpenURL

  48. N Guo, RC Qiu, BM Sadler, A UWB radio network using multiple delay capture enabled by time reversal. Proceedings of Military Communications Conference (MILCOM '06), October 2006, Washington, DC, USA